

15/6/24 (H11)

--	--	--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APRIL / MAY 2024

Semester I

PH5151 - ENGINEERING PHYSICS

(Regulation 2019)

Time:3hrs

Max.Marks: 100

CO1	Understanding the importance of mechanics.
CO2	Express the knowledge of electromagnetic waves.
CO3	Know the basics of oscillations, optics and lasers.
CO4	Understanding the importance of quantum physics.
CO5	Apply quantum mechanical principles towards the formation of energy bands in crystalline materials.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A (10 x 2 = 20Marks)

(Answer all Questions)

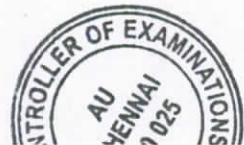
Q. No.	Questions	Marks	CO	BL
1	Write the rotational analogies of mass, force, velocity and momentum in linear dynamics.	2	CO1	L1
2	A cricket ball of mass 0.2kg and radius 0.06m spins on its own axis with 30 rad/sec. What is its angular momentum?	2	CO1	L2
3	Sate the principle behind the cell phone reception.	2	CO2	L2
4	Define Intensity of an EM wave in vacuum.	2	CO2	L1
5	State Doppler effect.	2	CO3	L1
6	Distinguish between a standing and a traveling wave.	2	CO3	L2
7	Define correspondence principle	2	CO4	L1
8	Mention some physical significance of the wave function	2	CO4	L2
9	What are the types of electrons microscope?	2	CO5	L1
10	The ground state of energy of a harmonic oscillator is 3eV. Find the energy separation between adjacent quantum states.	2	CO5	L2

PART- B (5 x 13 = 65Marks)

(Restrict to a maximum of 2 subdivisions)

Q. No.	Questions	Marks	CO	BL
11 (a) (i)	State and prove parallel axis and Perpendicular axis theorems	10	CO1	L3
(ii)	A dumbbell shaped object consists of two equal masses $m = 0.64$ Kg on the ends of a massless rod of length $L = 0.85$ cm. Calculate its moment of inertia about an axis one fourth of the way from one end of the rod and perpendicular to it ?	3	CO1	L4

OR


11 (b) (i)	Derive an expression for Couple per unit twist and how rigidity modulus of the material of the wire can be determined experimentally using torsional oscillations.	10	CO1	L3
(ii)	Consider a rod having length L and mass m which is pivoted at one end. Derive an expression for its time period of oscillations ?	3	CO1	L4
12 (a) (i)	Write down Maxwell's equations in the differential form and mention their significance and hence deduce the plane electromagnetic wave	10	CO2	L3

	equation in a vacuum.			
(ii)	Calculate the frequency of the radio waves with wavelength (λ) (a) 6000 Å, (b) 3.2 m, (c) 10 μ m and (d) 3.0 cm	3	CO2	L4
OR				
12 (b) (i)	What is a dipole-antenna? Discuss about the mechanism of producing and detecting Electromagnetic waves with appropriate figures.	10	CO2	L3
(ii)	If a cell phone has a dipole antenna of length 1.5cm, estimate the wavelength of the radiowave and its operating frequency.	3	CO2	L4
13 (a) (i)	Explain the principle, construction and working of Semiconductor laser with relevant energy level diagram?	10	CO3	L3
(ii)	Find the relative population of two states in a Nd : YAG laser that produces a light beam of wavelength 6943 Å at 300 K	3	CO3	L4
OR				
13 (b) (i)	Explain in detail the construction, working and energy levels of a CO ₂ laser.	10	CO3	L3
(ii)	Calculate the wavelength of light emission from GaAs whose band gap is 1.44 eV.	3	CO3	L4
14 (a) (i)	Derive an expression for Schrodinger's time independent wave equations	10	CO4	L3
(ii)	If the momentum of the particles (electron) are in the ratio 1:0.25 compare their de Broglie wavelengths.	3	CO4	L4
OR				
14 (b) (i)	Explain in detail the nature of energy levels and wave function for a particle in an infinite potential well	10	CO4	L3
(ii)	An electron is trapped in a one dimensional box of length 0.1 nm calculate the energy required to excite the electron from its ground state of fifth excited state	3	CO4	L4
15 (a) (i)	What is the principle of scanning tunneling microscope? Explain the construction and working scanning tunneling microscope with a suitable diagram.	10	CO5	L3
(ii)	Sketch the wave functions and the probability distribution for the n = 4 and n = 5 states for a particle trapped in a finite square well of width L	3	CO5	L4
OR				
15 (b) (i)	Describe the ground state energy of harmonic oscillator by quantum mechanical treatment.	10	CO5	L3
(ii)	Calculate the de-Broglie's wave length of an electron having a velocity of 10 ⁶ m/sec.	3	CO5	L4

PART- C (1 x 15 = 15Marks)

(Q.No.16 is compulsory)

Q. No.	Questions	Marks	CO	BL
16. (i)	Discuss the origin of energy bands by stating Bloch's theorem and describing the kroenig-Penney model	12	CO5	L5
(ii)	what happens to the ground state energy of particle in 3D box, When all the side of box is doubled	3	CO5	L4

